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We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown
that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described
exactly by semi-Poisson statistics �SP� typical of pseudointegrable systems. It is also shown that our results are
universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by
smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of
our system are similar to those of a disordered conductor at the Anderson transition, we report important
quantitative differences in both the level statistics and the multifractal dimensions controlling the transition.
Finally, the study of quantum transport properties suggests that the classical singularity induces quantum
anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold
atoms techniques.
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I. INTRODUCTION

It is by now well established that the analysis of the level
statistics is one of the main tools in the study of quantum
complex systems. Moreover, the spectrum, unlike the wave
functions, is easily accessible either numerically or experi-
mentally. Part of this interest stems from the fact that, once
the model-dependent spectral density is extracted from the
spectrum, the level correlations of apparently unrelated mod-
els show striking universal features in a variety of physical
situations. For instance, the celebrated Bohigas-Giannoni-
Schmit conjecture �BGS� �1� states the level statistics of a
quantum system whose classical counterpart is deterministic
but fully chaotic does not depend on the microscopic details
of the Hamiltonian but only on the global symmetries of the
system and coincides with those of a random matrix with the
same symmetry �usually referred to as Wigner-Dyson statis-
tics �WD� �2��.

Remarkably, the same WD also describes �3� the spectral
correlations of a disordered system �4� in the metallic limit.
By contrast, for disorder strong enough, eigenstates localiza-
tion becomes important, the spectrum is not correlated, and
the level statistics is universally described by Poisson statis-
tics. For deterministic systems Poisson statistics appears,
provided that the classical dynamics is integrable �5�.

Despite its robustness, the universality associated with
WD also has clear limits of applicability. For instance, the
quantum properties of Hamiltonians whose classical phase
space is a superposition of chaotic and integrable parts are
supposed to depend dramatically on the details of the Hamil-
tonian, and consequently their properties are nonuniversal.
Similarly, for finite disordered systems in the metallic re-
gime, the dimensionless conductance g=Ec /� �Ec, the Thou-
less energy, is a scale of energy associated with the classical
diffusion time through sample and � is the mean level spac-
ing� sets the number of eigenvalues whose spectral correla-
tions are universally described by WD.

Universality in the spectral correlations also has a coun-
terpart in the eigenfunctions properties. Thus, Poisson statis-
tics is associated with exponential localization of the eigen-
functions, and WD is typical of systems in which the
eigenstates are delocalized through the sample and can be
effectively represented by a superposition of plane waves
with random phases.

Recently, it was reported �6–8� that the quantum proper-
ties of a disordered conductor at the metal-insulator transi-
tion �usually referred to as the Anderson transition �AT�� are
to a certain extent also universal. Features related to this new
universality class include multifractal eigenstates �9� and
level statistics given by critical statistics �7� �see below for a
definition�. Intuitively �10� multifractality means that eigen-
states have structures at all scales. Roughly speaking, the
amplitude of probability of a multifractal eigenstate has
peaks �“probability splashes”� at all scales decaying as a
power law from its maximum. Consider the volume of the
subset of a box for which the absolute value of the wave
function � is larger than a fixed number M. If this volume
scales as Ld*

�with d*�d�, then d* is called the fractal di-
mension of �. In case the fractal dimension depends on the
value of M, the wave function is said to be multifractal. On
a more formal level multifractality is defined either through
the box counting method �see �25� and Sec. III C below� or
the anomalous scaling of the eigenfunction moments Pq
=�ddr���r��2q with respect to the sample size L as Pq

�L−Dq�q−1�, where Dq is a set of exponents describing the AT
�9�. “Critical statistics” �6,7� �the level statistics at the AT� is
intermediate between Wigner-Dyson and Poisson statistics.
Typical features include: scale invariant spectrum �6�, level
repulsion, and asymptotically linear number variance �8�.

Level and eigenfunction correlations at the AT are said to
be universal in the sense that typical features of critical sta-
tistics as level repulsion, scale invariance, and linear number
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variance ��2�L�= �L2�− �L�2=	L for 	�1 and L
1� do not
depend on boundary conditions, the shape of the system, or
the microscopic details of the disordered potential �11�.
However, the slope of the number variance or the functional
form of certain level correlators as the level spacing distri-
bution P�s� �the probability of having two eigenvalues at a
distance s� may depend on additional parameters as the di-
mensionality of the space.

Another argument reinforcing the universality of critical
statistics is the fact that, as for WD, which describes the level
statistics of a Gaussian random matrix model, critical statis-
tics has also been found in a variety of generalized random
matrix models: based on soft confining potentials �12�, effec-
tive eigenvalue distributions �13,14� related to the Calogero-
Sutherland model at finite temperature, and random banded
matrices with power-law decay �15�. The latter is especially
interesting since an AT has been analytically established by
mapping the problem onto a nonlinear � model.

Finally, we recall that critical statistics is not related to
any ergodic limit of the quantum motion as in the case of
WD. Consequently, it is capable to describes nontrivial dy-
namical features and its limit of validity is not restricted to a
scale given by the dimensionless conductance g �as for WD�.

A natural question to ask is whether critical statistical and
multifractal wave functions are exclusive of disordered sys-
tems or may also appear in deterministic quantum systems.
Indeed, in a recent Letter �16� we have established a relation
between the presence of anomalous diffusion in the classical
dynamics, the singularities of a classically chaotic potential,
and the power-law localization of the quantum eigenstates.
Specifically, for a certain kind of singularity �log for 1+1D
system� associated with classical 1 / f noise, it is found that
the level statistics is described by critical statistics and the
eigenstates are multifractal with a Dq quantitatively similar
to the one at the AT. These results are universal in the sense
that neither the classical nor the quantum properties depend
on the details of the potential but only on the type of singu-
larity.

Other nonrandom systems whose level statistics has been
reported to be similar to critical statistics include: Coulomb
billiards �17�, anisotropic Kepler problem �18�, generalized
kicked rotors �19�, and pseudointegrable billiards �20,21�.
For the latter the dynamics is intermediate between chaotic
and integrable and, in order to fit the spectrum, Bogomolny
and co-workers introduced �20� a purely phenomenological
short-range plasma model whose joint distribution of eigen-
values �20� is given by the classical Dyson gas with the
logarithmic pairwise interaction restricted to a finite number
k of nearest neighbors. Explicit analytical solutions are avail-
able for general k. For instance, for k=2 �usually referred to
as semi-Poisson statistics SP�, R2�s�=1−e−4s, P�s�=4se−2s,
and �2�L�=L /2+ �1−e−4L� /8, where R2�s� is the two-level
correlation function �TLCF�. In passing, we mention that SP
can also be obtained by removing every k eigenvalue out of
a spectrum with Poisson statistics. It turns out that this short-
range plasma model reproduces typical characteristics of
critical statistics such as level repulsion and linear number
variance with a slope depending on k.

However, SP is quantitatively different from critical sta-
tistics. In critical statistics, as mentioned above, the joint

distribution of eigenvalues can be considered as an ensemble
of free particles at finite temperature with a nontrivial statis-
tical interaction. The statistical interaction resembles the
Vandermonde determinant, and the effect of a finite tempera-
ture is to suppress the correlations of distant eigenvalues. In
the case of SP this suppression is abrupt �20� since only
nearest-neighbor levels can interact. Thus, critical statistics
and SP share similar generic features but are in principle
quantitatively different.

The aim of this paper is to establish under what generic
circumstances one may expect SP in the context of nonran-
dom Hamiltonians.

For the sake of clearness we enunciate our main conclu-
sions: We have found that the appearance of SP can indeed
be traced back to the presence of a certain kind of singularity
�different from the one associated with critical statistics� in
the classical potential. It is shown that SP is indeed robust
under arbitrary smooth perturbations of the classical poten-
tial or the insertion of a magnetic flux provided that the
classical singularity is preserved. The eigenfunctions associ-
ated with SP are found to be multifractal but quantitatively
different from those of a disordered conductor at the AT.
Finally, we argue that quantum anomalous diffusion induced
by the classical singularity may be verified experimentally
by using ultracold atoms techniques.

The organization of the paper is as follows. In the next
section we introduce the model: a generalized kicked rotor in
a potential with a steplike singularity. In Sec. III we discuss
analytical results available for our model, then we investigate
the level statistics and perform a multifractal analysis of the
eigenstates. Finally, in Sec. IV we examine the quantum dif-
fusion of our model and discuss possible ways of experimen-
tal verification.

II. THE MODEL

We investigate a generalized kicked rotor in 1+1D with a
steplike singularity,

H =
p2

2
+ V�q�	

n

��t − nT� , �1�

with q� �−
 ,
�, where V�q� is an arbitrary nonanalytical
function with a steplike singularity. The simplest case corre-
sponds to

V�q� = 
v0, if q � �− a,a�
0, otherwise,

� �2�

where a sets the size of the step and v0 the height. We shall
see in a broad range of parameters our results do not depend
on the specific form of V�q� but only on the presence of the
singularity.

The quantum dynamics is governed by the quantum
evolution operator U over a period T. Thus, after a period
T, an initial state �0 evolves to ��T�=U�0

=e−ip̂2T/4h̄e−iV�q̂�/h̄e−ip̂2T/4h̄�0, where p̂ and q̂ stand for the
usual momentum and position operator. Our aim is to solve
the eigenvalue problem U�n=e−i�n/��n, where �n is an
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eigenstate of U with quasieigenenergy �n. In order to pro-
ceed, we first express the evolution operator �m�U�n�=Unm

in a basis of momentum eigenstates ��n�= �ein� /2
�
 with
n=0, . . . ,N→�,

Umn =
e−i�T�/4��m2+n2�

2

�

−





dqeiq�m−n�−iV�q�/� �3�

We remark that in this representation, referred to as “cylinder
representation,” the resulting matrix Unm is unitary exclu-
sively in the N→� limit. For practical calculations this
is certainly a disadvantage since, besides typical finite size,
one also has to face truncation effects, namely, the integral of
the density of probability is not exactly the unity and eigen-
values are not pure phases �e−i�n� as expected in a unitary
matrix.

An alternative procedure, referred to as “torus representa-
tion,” especially suited for numerical calculations, is to make
the Hilbert space finite �i.e., m ,n=1, . . . ,N� but still keep the
matrix unitary. This can be achieved by imposing periodicity
�with period P�N� in momentum space. With these choices
� is set to the unity since the period in momentum P�N and
the period in position Q�2
 are related by PQ=2
N�.
Thus, the period on momentum is large �P=N� and the phase
space effectively resembles a cylinder �for more details see
�22��.

In order to keep the kinetic term of the evolution matrix
also periodic, we take T=2
M /N with M an integer �not a
divisor of N�. For technical reasons �see below� M is chosen
to make T roughly constant ��0.1 in this paper� such that
M /N is a good approximation to an irrational for every N
used. The resulting evolution matrix �for N odd� then reads

�m�U�n� =
1

N
e−i�
M/2N��m2+n2�	

l

ei��l,m,n�, �4�

where ��l ,m ,n�=2
�l+�0��m−n� /N−V�2
�l+�0� /N�,
l=−�N−1� /2 , . . . , �N−1� /2 and 0��0�1; �0 is a parameter
depending on the boundary conditions ��0=0 for periodic
boundary conditions�.

In this paper we shall use both representations depending
on the issue to be discussed. Thus, for the analytical analysis
the cylinder representation is more appropriate: the limit
N→� can be effectively taken and consequently truncation
effects are absent. For the numerical calculations we use the
torus representation due to the difficulty to deal with trunca-
tion effects. An exception is the case of quantum diffusion,
where these effects can be accurately detected and subtracted
from the calculation. As a final remark we mention that the
numerical evaluation of the eigenvalues and eigenvectors of
U �either for the torus or the cylinder� is carried out by using
standard diagonalization techniques for volumes ranging
from N=500 to N=8000. For �0=0, parity is a good quan-
tum number and consequently states with different parity
must be treated separately.

III. RESULTS

For the sake of clearness we first summarize our main
results:

�1� The level statistics associated with the evolution ma-
trix of the Hamiltonian Eq. �1� is scale invariant and given
by SP in the region S=tan�v0 /2�
1, where v0 is the height
of the steplike potential. These results are universal: they
neither depend on the specific form of V�q� �provided that
the singularity is preserved� nor on any source �as a magnetic
flux� of time-reversal symmetry.

�2� In the limit S=tan�v0 /2��1 the spectrum is scale in-
variant and well described by Poisson statistics. For interme-
diate values of S we observe a transition from SP to Poisson
as S is decreased.

�3� In the SP region the eigenstates are multifractal but
with a multifractal spectrum Dq�A /q+D� essentially differ-
ent from the one observed at the AT.

�4� The classical singularity induces quantum anomalous
diffusion.

A. Analytical results

In this section we investigate what kind of analytical in-
formation can be obtained from the Hamiltonian Eq. �1�. Our
aim is to show that in a certain range of parameter the level
statistics associated with Eq. �1� is exactly given by SP. In a
first step we map, following the standard prescription of Ref.
�23�, the evolution matrix Eq. �4� onto a 1D Anderson model.
For smooth potentials such mapping results in a standard 1D
Anderson model with short-range hopping. As known, for
this kind of model eigenstates are exponentially localized for
any amount of disorder and consequently dynamical local-
ization has been reported �23� in the associated kicked-rotor
system.

However, in our case the situation is different. The clas-
sical steplike singularity induces long-range correlations in
the associated 1D Anderson model,

H�n = �n�n + 	
m

F�m − n��m, �5�

where �n� tan�Tn2�,

F�m − n� = �
−


−


d� tan�V���/2�e−i��m−n� = A
sin ��m − n�

m − n
,

A� tan�v0 /2�, and �=a. For �n, a random number from a
box distribution �−W /2 ,W2�, it has been shown recently �24�
�see the discussion below� without invoking any ensemble
average that the level statistics is exactly given by SP in the
limit A
W. However, as A gets comparable to W a shift to
Poisson is observed. Thus, for our Hamiltonian Eq. �1� the
region in which SP holds corresponds with v0�

�A=tan�v0 /2�
1�. Moreover, T must be such that
�n� tan�Tn2� is approximately random; this always occurs
for T�1 irrational. In the torus representation of the evolu-
tion matrix T must be rational so in order to overcome this
problem we set T to be a good approximation to an irrational
number.

For the sake of completeness the rest of this section is
devoted, following Ref. �24�, to a technical account of the
reasons for the appearance of SP in the Hamiltonian Eq. �5�.
We recall that throughout the demonstration the diagonal en-
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ergy �n is assumed to be strictly random. First, we express
the Hamiltonian �5� in Fourier space as

H = Ek�k + 	
k�k�

Â�k,k���k�,

where

Ek = 	
r

sin �r

r
eikr

and

Â�k,k�� =
1

N
	

n

�ne−in�k−k��.

We set �=
 /2 �our findings do not depend on ��. After a
simple calculation we find that Ek is not a smooth function
�this steplike singularity is indeed the seed for the appear-
ance of SP�; Ek=A
 /2 for k�
 and Ek=−A
 /2 for k�
.
There are thus only two possible values of the energy sepa-
rated by a gap �=A
. Upon adding a weak �A
W� disor-
dered potential this degeneracy is lifted and the spectrum is
composed of two separate bands of size �W around each of
the bare points −A
 /2 ,A
 /2. Since the Hamiltonian is in-
variant under the transformation A→−A, the spectrum must
also possess that symmetry. That means that, to leading order
in A �neglecting 1/A corrections�, the number of independent
eigenvalues of Eq. �5� is n /2 instead of n.

We now show how this degeneracy affects the roots �ei-
genvalues� of the characteristic polynomial P�t�=det�H− tI�.
Let

Pdis�t� = a0 + a1t + ¯ antn

be the characteristic polynomial associated with the disor-
dered part of the Hamiltonian. We remark that, despite its
complicated form, its roots by definition are random numbers
with a box distribution �−W ,W�. On the other hand, in the
clean case,

Pclean�t� = �t − A�n/2�t + A�n/2

�
 factors are not considered�. Due to the A→−A symmetry,
the full �Eq. �5�� case Pfull corresponds with Pdis but replac-
ing tk factors by a combination �t−A�k1�t+A�k2 with k1+k2

=k. The roots of Pfull will be in general complicated func-
tions of A. However, in the limit of interest, A
W→�, an
analytical evaluation is possible. By setting t= t1−A we look
for roots t1 of order of the unity in the A band. We next
perform an expansion of the characteristic polynomial Pfull
to leading order in A. Thus, we keep the terms An/2 and
neglect lower powers in A. The resulting Pfull is given by

Pfull = t1
n/2 +

an−2t1
n/2−2

3
+

an−3t1
n/2−3

4
+ ¯ 2

an/2+1t1

n
+ 2

an/2

n + 2
,

where the coefficients an are the same as those of Pdia above
but only n /2 of them appear in the full case. The eigenvalues
�i� of Eq. �5� around the A band are �i�=A+�i, with �i a root
of Pfull. The effect of the long-range interaction is just to
remove all the terms with coefficients a0 to an/2 from the
characteristic polynomial of the diagonal disordered case.

The spectrum is thus that of a pure diagonal disorder where
half of the eigenvalues have been removed. The remaining
eigenvalues are still symmetrically distributed �the ones with
largest modulus are well approximated by tmax= ±��an−2� /3�
around A. That means, by symmetry considerations, that the
removed ones must be either the odd or the even ones. This
is precisely the definition of semi-Poisson statistics. In con-
clusion, our model reproduces exactly the mechanism which
is utilized in the very definition of SP. We finally mention
that the only effect of the coefficients 3 ,4 . . . ,n+2/2 is to
renormalize the effective size of the spectrum: �2W for di-
agonal disorder and �2W /�3 for Eq. �5�.

B. Level statistics

The above analytical arguments have been fully corrobo-
rated by numerical calculations. As mentioned previously, in
order to avoid truncation effects we have chosen the torus
representation of the evolution matrix. Our first goal is to
show that the level statistics of our model with the potential
of Eq. �2� is given by SP in the region S=tan�v0 /2�
1 for
any a. In Fig. 1 we plot the level spacing distribution P�s�
for different values of a and S
1. As observed, the agree-

FIG. 1. �Color online� Level spacing distribution P�s� �a� and
spectral rigidity �3�L� �b� for the spectrum of the evolution matrix
Eq. �4� with potential Eq. �2� for different widths a and v0=
. In all
cases the size of the evolution matrix is N=6397. The agreement
with SP is excellent.
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ment with SP is excellent in all cases even in the tail of the
distribution and it is not restricted to short-range correlators.
As shown in Fig. 1�b�, the study of long-range correlators as
the spectral rigidity �3�L�= �2L4��0

L�L3−2L2r+r3��2�r�dr
further confirms this point. Up to scales of 30–40 eigenval-
ues deviations from SP are almost indistinguishable for dif-
ferent values of the parameters. Deviations for larger scales
are due to well-known finite size effects. Although not
shown, we have also checked that in the range of volumes
accessible to numerical techniques, the level statistics was to
a great extent scale invariant, namely, it was independent
from the system size. Once the region in which SP holds has
been established, we investigate the robustness and univer-
sality of these results. In order to proceed we have repeated
the level statistics analysis for a potential with a nonanalyti-
cal steplike form but perturbed by a smooth chaotic poten-
tial. As shown in Fig. 2, neither short- nor long-range spec-
tral correlators are affected by the chaotic perturbation
provided that the steplike nonanalyticity is preserved.
The perturbation potential Vper used in Fig. 2 is defined
by Vper=c1 cos�q�+c2 sin�q�+c3 cos�2q�+c4 sin�2q�, with ci

randomly chosen from a uniform distribution �0, 1�. We have

also checked that higher frequency components �cos�3q� do
not change the results provided that �Vpert��v0.

In addition, we have found that the level statistics is not
modified if time-reversal invariance is broken by adding a
magnetic flux to Eq. �1� �which is equivalent to setting T as
an irrational multiple of 2
; see �16��. These results indicate
that SP is universal; namely, it does not depend on the details
of the potential provided that the steplike singularity is still
present.

Finally, we study the transition to Poisson statistics as the
parameter S=tan�v0 /2� goes from S
1 �SP region� to S
�1. As shown in Fig. 3 the level statistics �both P�s� and
�3�L�� seems to move smoothly from SP to Poisson. All of
the typical features of criticality mentioned above are main-
tained through the transition. Of course, parameters as the
slope of the number variance 	 run from 	=1/2 �SP� to
	=1 �Poisson� as S is decreased. However, we stress that,
unlike the SP region, it is hard to define unambiguously a
universality class in the transition region. The point is that, in
essence, the appearance of SP can be traced back �see ana-
lytical results� to the gap in the spectrum of the Hamiltonian.
The steplike singularity thus separates the spectrum in two
different bands around the only two eigenvalues in the clean
case. As the disorder strength becomes comparable with the

FIG. 2. �Color online� Level spacing distribution P�s� �a� and
spectral rigidity �3�L� �b� of the spectrum of the evolution matrix
�N=6397� Eq. �4� with potential Eq. �2� and v0=
 and a=
 /2. As
observed, the level statistics is not affected either by the breaking of
the time-reversal invariance �dashed-dotted� line or by the addition
of a smooth perturbation �solid line� Vper=c1 cos�q�+c2 sin�q�
+c3 cos�2q�+c4 sin�2q� with random ci �see the text�.

FIG. 3. �Color online� Level spacing distribution �a� and spec-
tral rigidity �b� of the evolution matrix �N=6397� Eq. �4� for the
potential Eq. �2� for different v0 and a=1. A transition from SP to
Poisson is found as v0 goes from 
 to 0.
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numerical value of the bare eigenvalues, both bands mix up
and the spectrum deviates from SP. We could not find any
sign of universality in the way in which this mixing occurs
since it may depend on the microscopic details of the poten-
tial. Due to this lack of universality, in the rest of the paper
we will focus our investigation mainly on the region of pa-
rameters associated with SP.

C. Eigenvector analysis

We now investigate the eigenvector properties of the
Hamiltonian Eq. �1� with potential Eq. �2� in the region
S
1 corresponding to SP.

This choice stems from the fact that, as shown above, the
quantum properties do not depend on the details V�q� but
only on the presence of the steplike singularity. For the nu-
merical calculation we have again utilized the torus represen-
tation of the evolution matrix in order to avoid leaking of
probability due to truncation effects.

We have two clear objectives in this section. On the one
hand we would like to investigate whether the eigenvectors
associated with SP are multifractal as at the AT. Once this
question is answered affirmatively our intention is to provide
a careful and detailed analysis of the anomalous dimension
Dq controlling the eigenstate’s multifractality. Based on the
numerical findings we conjecture the relation Dq=A /q+D�,
which we claim to be valid for all systems with SP. To start,
we give a detailed account on how Dq was computed. We use
the standard box-counting procedure �25�. In doing so, for a
given eigenvector �=	k=1

N �k�k� of the system we first distrib-
ute all the components into Nl=N / l boxes of the same size l,
then associate a probability pi=	k��k�2 with each box with
k� �il , �i+1�l�; i=1, . . . ,Nl. The normalized qth moments of
pi define the generalized fractal dimensions �26�,

Dq�N� =
1

q − 1
lim
�→0

ln 	i=1

Nl pi
q

ln �
, �6�

where �= l /N is the size of the box normalized by the system
size N. In practical calculations Dq is evaluated over an ap-
propriate range of � by performing a linear regression of
log 	i=1

Nl pi
q with ln � �usually � /N���1/2, where � is a

characteristic microscopic length scale of the system �25��.
In our case a good linear dependence of ln 	i=1

Nl pi
q on ln � is

observed in the region �� �0.022,0.45� for a broad range of
the potential parameters v0 ,a of Eq. �2�. Dq�N� is thus com-
puted by linear regression over this � window for each ei-
genvector. Since Dq�N� is a self-averaging �15� quantity, the
mean value �Dq�N�� over all eigenstates provides a meaning-
ful description of the multifractal properties of the system.
We observe that, even after this averaging, the statistical
fluctuations of �Dq�N�� are still quite strong. In order to mini-
mize these fluctuations we perform an additional average
over realizations of the evolution operator Eq. �4� until we
obtain around 36 000 eigenvalues for each value of N �see
Fig. 4�. We generate different realizations of the evolution
matrix by varying the period T. In the time-reversal invariant
case �T=2
M /N� this is done by picking up different values

of M, and in the broken time-reversal case �T=2
� with �
irrational� by choosing different values of �.

As observed in Fig. 4, the �Dq�N�� thus obtained has a
significant dependence on the system size which gets smaller
as we approach the thermodynamic limit. In order to remove
this finite size effect from �Dq�N�� we have tried different
fittings, �Dq�N��=Dq+ f�N ,a ,b� with f�N ,a ,b�→0 as
N→� and a ,b ,Dq fitting parameters. Thus, the parameter
Dq corresponds with the N→� limit of �Dq�N��. We found
that for various values of q the choice of f that best describes
the finite size corrections is f�N ,a ,b�=ae−N/b �see Fig. 4 for
the case q=2�.

After the technical analysis we are ready to present our
results. First, we have found that the eigenstates are indeed
multifractal. As shown in Fig. 5, Dq �the N→� of �Dq�N���
depends clearly on q. We have also found that Dq is very
robust. Thus, it is not affected by different choices of a,
v0�
, smooth perturbations to the potential Eq. �2�, or by
the breaking of the original time-reversal symmetry.

The next task we face is try to find an explicit expression
for Dq. Unfortunately, we are not aware of any analytical
technique capable of obtaining Dq exactly. The compara-
tively short range of q values for which numerical calcula-
tions are available, together with the statistical fluctuations,
makes a numerical fitting ambiguous in the sense that many
different fittings may yield quite satisfactory results. On the
other hand, we think it is extremely important to have a
proper characterization of Dq in order to completely define
the universality class associated with SP. We found that the
simplest expression for Dq still compatible with the numeri-
cal analysis is Dq=A /q+D� �with A�0.28, and D��0.25�.
As shown in Fig. 5 the agreement with the numerical results
is very good. Remarkably, we have obtained a similar Dq in
the study of the quantum evolution matrix associated with
certain classical interval-exchange maps whose level statis-
tics is exactly given by SP �21�. Based on this finding, we
suggest that the Dq above describes the multifractal proper-
ties of all systems with SP.

FIG. 4. �Color online� System size dependence of the multifrac-
tal dimension �D2�N��. For each N the average is taken over around
36 000 eigenstates of the evolution operator Eq. �4� with the poten-
tial given by Eq. �2� and a=1, v0=
. The best-fitting function is
a exponential �0.0493±0.0007�e−N/�2290±122�+D2 with D2=0.381
±0.001 �solid curve�.
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As a double check we have also evaluated Dq via the
scaling of eigenfunction moments Pq=�ddr���r��2q

�L−Dq�q−1� with respect to the sample size L=N. In particu-
lar, Dq was obtained by linear regression of �ln Pq� with
respect to ln N. As in the previous case, the average is taken
over all eigenvectors and different realizations of the evolu-
tion and finite size effects are removed by an appropriate
fitting. The Dq obtained in this way is in complete agreement
with the previous one within the numerical errors.

Finally, we compare the above Dq with the predictions of
critical statistics. First, we remark that a comparison with a
3D �or 4D� disordered conductor at the AT is not entirely
satisfactory since parameters as the slope of the number vari-
ance ��0.27 in the 3D case� defining the AT are different
from the SP prediction �1/2�. We thus find it more appropri-
ate to compare the SP results with those of a random banded
matrix with a power-law ��1/r� decay and bandwidth b
�15�, where the spectral statistics is given by critical statistics
and the multifractal character of the eigenstates has been
established analytically. In the limit b�1, closer to SP, it is
found that for q�1/2

Dq =
4b
�


��q − 1/2�
��q�

. �7�

As shown in Fig. 5 �inset�, this function does not describe the
multifractal dimensions associated with SP for any b. Thus,
we can conclude that despite their similarities critical statis-
tics and SP belong to a different universality class.

IV. QUANTUM ANOMALOUS DIFFUSION AND
EXPERIMENTAL VERIFICATION

In this section we investigate how quantum transport
properties are affected by the steplike nonanalytical poten-

tial. Our motivation is twofold: On the one hand we wish to
examine possible ways to test our results experimentally. On
the other hand we are interested in finding out to what degree
the phenomenon of dynamical localization typical of kicked
rotors with smooth potentials �cos�q� is affected by the clas-
sical singularity. We recall that dynamical localization for
smooth chaotic potentials manifests itself in the quantum
suppression of classical diffusion in momentum space due to
interference effects. Thus, contrary to the BGS conjecture
�1�, though the classical dynamics is chaotic, eigenstates are
exponentially localized in momentum space and the level
statistics is Poisson.

We start by computing both the quantum and classical
density of probability P�k , t�= ��k ���t���2 of finding a particle
with momentum p=k� at time t for a given initial state
���0��= �0� �initial condition in the classical case�.

The first problem we face is that the potential Eq. �2� has
a quite peculiar classical limit. The force exerted on the par-
ticle is a sum of two Dirac delta functions ��q±a�, namely, it
vanishes elsewhere except at q= ±a, where formally it di-
verges. Consequently, the classical motion is that of a free
particle in a ring except for q= ±a, where it gets an infinite
force. Obviously, in order to compare classical with quantum
predictions one first has to smooth the step potential. Thus,
for the analysis of dynamical localization we consider the
potential

V�q� = Si��a + q�/�� + Si��a − q�/�� , �8�

where Si�q�=�0
q�sin�t�t�dt is the sine integral function. For

�→0 we recover the steplike potential. The classical force
associated with this potential is F�q�= �1/ �a−q�� sin ��a
−q� /��− �1/ �a+q�� sin��a+q� /�� �Dirac delta functions in
the limit �→0�. With this potential we get a well-defined
classical limit for any finite �. We have computed the
classical P�p , t� by evolving the classical equation of motion
for 106 different random initial conditions with zero momen-
tum p=0 and uniformly distributed position along the inter-
val �−
 ,
�. We have found that P�p , t��2Dt / p2 for
�p��c����2Dt, where D�1/2� and c��� increases as � de-
creases. Outside this region P�p , t� resembles that of a stan-
dard diffusion process. Thus, for sufficiently small p and t
the diffusion is anomalous and then gradually becomes nor-
mal. In Fig. 6 we plot the quantum and classical variance
�p2�t�� of the density of probability P�p , t� �p=�k for the
quantum case� measured at time t. Calculations were carried
out for the differentiable potential of Eq. �8�. It is observed
that, as expected, for short times both classical and quantum
results coincide. However, after a certain breaking time
tb�D�100 the quantum particle still diffuses but at a slower
rate than the classical one, thus suggesting that diffusion is
weakened by quantum interference effects. We relate this
new region of weak dynamical localization to the effect of
the classical singularity on the quantum dynamics.

For even longer times tc�20 000 related to the crossover
to normal classical diffusion the quantum particle tends to
localize in momentum space as a consequence of standard
dynamical localization effects. The latter regime is due to the
underlying smooth nature of the potential investigated. Thus,

FIG. 5. �Color online� Generalized fractal dimensions Dq for the
eigenvectors of the evolution matrix Eq. �4� with potential Eq. �2�
and a=1, v0=
. Solid dots are the results from Eq. �6� and the open
dots are those obtained from the scaling of the averaged ln Pq with
ln N �see the text�. The solid curve is the conjecture A /q+D�, with
A=0.286±0.001 and D�=0.238±0.001. Inset shows the same re-
sults together with the prediction of critical statistics Eq. �7� for
b=0.06, 0.18, and 0.30, respectively.
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in order to observe genuine quantum effects associated
with classical singularities the value of � must be such that
tb� tc. We remark that this condition should be met by any
experiment aiming to confirm the results reported in this
paper.

For the sake of completeness we have also investigated
the specific form of the quantum P�k , t� as a function of k
�from now on we switch back to our original potential Eq.
�2��. In the context of a disordered conductor it has been
reported that �27� at the AT the quantum diffusion is anoma-
lous. For time scales large enough the density of probability
has a power-law form with the exponent depending on the
multifractal dimension D2. Similar results have also been
obtained recently in momentum space for a kicked rotor with
a logarithmic singularity �16�. As expected, we have also
observed power-law tails in our model in both the short and
the long t limit. For �k�
 t /�� �with �=1/2
 the spectral
density� a best-fit estimate yields P�k , t�� t0.84±0.01�k�−2 �see
Fig. 7�, similar to the classical prediction. By contrast, in the
opposite limit though power-law tails have also been found
the diffusion is slower, in agreement with previous findings.

Another feature induced by the steplike singularity is the
power-law localization of the eigenstates. In Fig. 8 it is
clearly observed that the eigenstates �28� have power-law
tails with an exponent around minus 1. This is in clear con-
trast with the exponential localization observed in the kicked
rotor with a smooth potential. However, it is similar to the
case of a potential with a log singularity �16�; not surpris-
ingly, in both cases the off-diagonal elements of the evolu-
tion operator present a similar power-law decay �15�. We
mention that there is no contradiction between this smooth
power-law behavior and the multifractal features investigated
previously. The point is that the multifractal character of
the eigenstates appears as strong fluctuations around the
smooth power-law behavior above. Roughly speaking, we
can say that smooth power-law localization is the precursor
of multifractality.

Finally, we discuss how the findings of this paper may be
tested experimentally. The first direct experimental realiza-
tion of the quantum kicked rotor with a smooth potential was
reported by Raizen �29� and co-workers in 1995. The experi-
mental setup consisted of a dilute sample of ultracold atoms
�typically cesium or sodium� “kicked” by a periodic standing
wave of near-resonant light that is pulsed on periodically in
time to approximate a series of delta functions. The typical
output of the experiment is the distribution of the atom mo-
mentum as a function of time. It is also possible to estimate
the quantum breaking time signaling the beginning of quan-
tum localization. For the case of a smooth periodic standing
wave, dynamical localization was also detected experimen-
tally, in full agreement with the theoretical predictions. We
thus propose that the full P�k , t�, the accumulated probability

FIG. 6. �Color online� Classical and quantum variance �p2�t�� of
the density of probability P�p , t� �see the text� for the Hamiltonian
Eq. �1� �T=1, �=1� and potential given by Eq. �8� with �=10−4.
The classical counterpart was obtained from 106 random initial con-
ditions with zero initial momentum and uniformly distributed q in
�−
 ,
�.

FIG. 7. �Color online� Quantum coarse-grained P�k , t� versus k
at various times t associated with the potential Eq. �2� �v0=
 and
a=
 /2� plus a perturbation Vper�q�=8 cos�q�. For a given pair of k
and t, Pc�k , t� is the average of P�k� , t�� over k�=k−63, . . . ,k+64
and t�= t−24, . . . , t+25. Pc�k , t� has power-law tails �t0.84±0.01�k�−2

for �k�
 t /��, where � is the spectral density. Similar results are
observed if only the potential Eq. �2� is considered.

FIG. 8. �Color online� A typical eigenstate of the evolution ma-
trix Eq. �4� �T=1, �=1� with potential Eq. �2� �v0=
 and a=
 /2�
plus a perturbation Vper=8 cos q. The modulus of the eigenstate ��k�
decays from its peak k0 as a power law with an exponent close to
−1. Indeed, the best fit �dashed line� corresponds to a slope of
−0.98.
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or the variance represented in Fig. 6 may by accessible to
experimental verification provided that the smooth periodic
standing wave is replaced by the steplike wave studied in
this paper. Obviously, from a experimental point of view the
steplike singularity is only approximated. Typically, the ex-
perimental signal is composed of a limited number of Fourier
components and consequently it is smooth on sufficiently
small scales �as the potential discussed in connection with
dynamical localization�. However, as we have shown in the
previous section, we expect our results to hold in these “al-
most” nonanalytical potential at least up to a certain time
scale related to the underlying smoothness of the potential.

V. CONCLUSIONS

In this paper we have studied a kicked rotator with a
nonanalytical steplike singularity. It has been identified as a
region of parameters where the level statistics is exactly
given by SP. These results are universal in the sense that they
do not depend on the specific form of the potential but only

on the presence of the classical singularity. The eigenfunc-
tions have been shown to be multifractal but with a set of
multifractal exponents Dq different from the prediction of
critical statistics. We have also conjectured, based on the
numerical analysis and the comparison to other models with
SP, that all systems described by SP have the same form of
Dq �Dq=A /q+D��. Finally, we have studied transport prop-
erties. It has been found that, unlike the standard kicked ro-
tor, dynamical localization slows down but does not stop
quantum diffusion. We have also discussed the possibility of
experimental verification of our findings by using ultracold
atoms kicked by a standing wave with an approximated step-
like form.
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